
TABLE 2. Comparison of the Results of the Same Series of 
Measurements Analyzed According to Two Methods 

Measured 
quantities 

Method [ 5 ] Present method 
r~=65~ l r~=80~ a t  e I~  I a t  8o~ Tz~50~ 

0,463 
O, 124 
0,413 I 0,455 0,448 0,528 0,484 

O, 123 O, 122 O, 132 0,126 
0,422 0,430 0,340 O, 390 

7, about -5% for p, and about + 15% for g. This proves that the proposed method signifi- 
cantly corrects the errors in the known methods. It is also proved that the correction is 
larger for higher absolute values of temperature gradients of the measured quantity. 

Summarizing the obtained results, we note that taking into account the temperature de- 
pendence of the integral radiation, transmission, and reflection coefficients (which is 
taken to be linear in the temperature range of the three employed blackbodies) of spectrally 
selective materials contributes to the lowering of methodical measurement errors that are pre- 
sent in the known methods. With an additional analysis of the measurement results it is 
possible at the same time to determine the temperature gradients of the sought integral co- 
efficients, which cannot be achieved by other measurement methods. 

NOTATION 

~, absorption coefficient; ~, emission coefficient; p, reflection coefficient; T, trans- 
mission coefficient; ~, Stefan-Boltzmann constant; %, wavelength; L, irradiance; T, temper- 
ature; e, r, t, temperature gradients of the integral emission (e), reflection (r), and 
transmission (t) coefficients; U, electrical signal at the output of the photodetecting sys- 
tem (PDS). Indices: single indices pertain to blackbodies at the temperatures of o, sample, 
i, first (isothermal chamber), 2, second, and 3, third; ij (i, j = i, 2, 3) refers to the 
sample under the conditions of a simultaneous irradiation of its visible side by a blackbody 
at temperature T i and of its opposite side by a blackbody at temperature Tj. 
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THERMAL CONDUCTIVITY OF POLYMER COMPOSITES WITH A DISPERSE FILLER 
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and M. A. Tyrtsakova 
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A method is proposed for predicting the thermal conductivity of polyolefin compos- 
ite materials with a disperse filler. The method is based on the combined appli- 
cation of percolation theory and generalized conduction theory. The results of the 
calculations are in good agreement with experimental data over a wide range of fil- 
ler concentrations at various temperatures. It is shown that the thermal:conductiv- 
ity of certain composites can be an order of magnitude higher than the thermal 
conductivity of their matrices. 

The thermophysical properties of polymer composites depend on the properties of the ba- 
sic components: the polymer matrix and the filler. The fillers have superior thermophysical 
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(i) and (2); 3) according 
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characteristics in most cases~ so that the properties of the polymer matrix limit transfer 
processes in the composite if there are no structural modifications in the composite. The 
introduction of various kinds of fillers in a polymer alters its structural characteristics 
where the degree of modification depends largely on the concentration of the filler and its 
activity in relation to the polymer and can significantly influence the conductivity of com- 
posites. At the present time we do not have any rigorous theories applicable for describing 
heat-transfer processes in composites, so that one is compelled to use model representations 
to describe these properties. 

Our investigation is based on a natural model of composite structure. It utilizes con- 
cepts discussed in [i, 2] about the basic structures of a heterogeneous system (a structure 
with closed inclusions and a structure with interpenetrating components), along with the 
ideas of percolation theory [3, 4]. 

A composite undergoes major structural changes as the concentration of its filler is 
varied. The particles of a low-concentration filler are uncoupled (if they are randomly 
distributed throughout the matrix), and the composite represents a structure with closed in- 
clusions. When the volume concentration of the filler reaches a critical value (approximate- 
ly 17% for three-dimensional systems [3]),an infinite cluster (IC) of filler particles is 
formed {percolation phase transition). In this case the structure of the composite changes 
to a mixed type: closed inclusions + interpenetrating components. A further increase in the 
filler concentration reduces the fraction of closed inclusions in the composite almost to 
zero and, accordingly, changes its structure into a structure with interpenetrating compo- 
nents. As the volume concentration of filler is varied from 50% to 100%, the structure of 
the composite evolves in the reverse order to that described above. Consequently, this mod- 
el is symmetric/about the point of equal volume concentrations of filler and matrix. A 
similar model has been discussed previously [5], but our approach differs significantly in 
that it treats the structure of the composite over a broad range of filler concentrations, 
such that a mixed type of structure is achieved. The specific geometry of closed inclusions 
and an IC is modeled in [5], whereas in our case the statistical concept of "IC power" is 
used. The IC power is calculated from the critical index, providing a natural means for de- 
termining the volume fraction of the IC in the mixed structure, rather than assuming, as in 
[5], that it is proportional to the filler concentration. 

The conductivity of heterogeneous systems has already been calculated [i, 2] on the basis 
of generalized conduction theory for small filler concentration [up to (17 • i) vol.%], when a 
structure with closed inclusions prevails, and for fairly large filler concentrations, when 
a structure with interpenetrating components occurs. The introduction of the concept of the 
unit cell, whichissubsequently subdivided by a system of adiabatic and isothermal surfaces, 
enables us to obtain corresponding functional relations for calculating their relative effec- 
tive thermal conductivity. For structures with closed inclusions the adiabatic subdivision 
of the unit cell gives [i] 

Xo _ 8--(8-- I)(~I/3--~) (i) 
~ 6 - - 0 1 / 3 ( 6  - 1) 
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Fig. 2. Relative thermal conductivity 
X0/X M of polypropylene composites filled 
with graphite (a) and alundum (b) vs 
temperature T, K. a: i) pure PP; 2, 2') 
25% graphite filler (experimental and 
calculated, respectively); 3, 3') 40%; 
4, 4') 50%. b: i) pure PP; 2, 2') 25% 
alundum filler (experimental and cal- 
culated); 3, 3') 45%; 4, 4') 55%. 

where 6 ~ Xf/XM, and its isothermal subdivision gives 

~o 1 + ( 8 - - 1 ) ~ 2 / s  
- - =  ( 2 )  

~ 1 + ( 8 -  1)(q2/s - -  ~) 

Analytical equations have been derived [i] for structures with interpenetrating compo- 

n e n t s :  . ~o ----~k ~ + ( 1 - k ) 2 +  

%M 

for adiabatic subdivision of the unit cell, and 

~,o i 1 - -  k 
x. =l  1+(8--1)~ + 

for isothermal subdivision, where 

1 + sgn  (1 - -  2~1) cos (~o/3), k=-~- 

2k (1 - -  k) 

1 - - k  + k8  - 1  (3) 

k ]-, (4) 
( ~ - - l ) ( 2 - - k ) k  + 1 

3~ 
q~ = arccos (ll - -  2~11), ~ ~ q~ - ~  2~. ( 5 )  

The arithmetic mean of the results of adiabatic and isothermal subdivision yields the 
complete solution of the problem of the approximate calculation of the thermal conductivity 
of a heterogeneous system with the corresponding structure (closed inclusions or inter- 
penetrating components) [i]. 

Thus, our problem is, first, to determine the filler volume concentration at which the 
transition is made from a mixed-type structure to a structure with interpenetrating compo- 
nents and, second, to calculate the thermal conductivity of the composites in the interme- 
diate range of filler concentrations, where the composite has a mixed-type structure. 

Percolation theory predicts the onset of anomalies in the behavior of the parameters of 
composites near the percolation threshold. The formation of an IC is a structural phase 
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transition. It is customarily assumed [3, 4] that the anomalies in the behavior of the 
characteristics of the system near the critical point have a power-law character. In partic- 
ular, the probability of a particle belonging to an IC (the IC power) is 

P(T)=T, O ~ m < l ,  (6) 

where �9 = (N - qc)Nc - 

The critical concentration qc depends on the dimensionality of the space in which per- 
colation takes place [4]. As the number of dimensions of the space increases, the probabil- 
ity of the formation of bypass routes increases, and the critical concentration becomes lower. 
If the length ofithe sample in directions perpendicular tothe conduction direction is much 
greater than the characteristic diameter of the filler particles, percolation takes place 
in three-dimensional space. Within the framework of a continuum model for three-dimensional 
space percolation theory gives the critical concentration qc = 0.17 i0.01 [3, 4]. 

Since the critical indices are determined mainly by the large-scale structure of the 
cluster, the nature of the interaction at small distances has scarcely any influence on them. 
For this reason the critical indices are invariant for all types of problems (lattice or con- 
tinuum) and depend only on the dimensionality of the space. In three-dimensional space we 
have ~ =i0.40 [3, 4]. 

Equation (6) can be used to estimate the upper bound of filler volume concentrations at 
which the mixed-type structure can exist. Inasmuch as P(q) is the probability that a particle 
belongs to an IC, the number of particles belonging to the IC is NIC = P(n)N (N is the total 
number of filler particles), so that 

~IC = ~P (~)" (7) 

It is obvious that for unit IC power [P(q) = i)] all the filler particles belong to the IC, 
and the composite acquires a structure with interpenetrating components. The condition P(N) 
= 1 corresponds to q = 2Nc , i.e., N z 0.34. 

To calculate the thermal conductivity of the composite in the interval of filler concen- 
trations for a mixed structure [i.e., when 0 < P(~) < i], we regard the composite as a three- 
component system: matrix + closed filler inclusions + IC filler particles. We first calculate 
the thermal conductivity of the two-component system matrix + closed inclusions according to 
Eqs. (1)-(5), but with renormalized values of the concentrations: 

~M § ~ci ~§ (8) 

where nM' and Nci' are the renormalized concentrations of the matrix and the closed inclu- 
sions, respectively, DM = 1 - ~, and Nci = q - DIC" We then treat the composite once again 
as a binary system, which contains a binder component having the thermal conductivity ~' 
and concentration N' = 1 - NIC and IC filler particles with the thermal conductivity If and 
concentration qIC, and again we calculate the thermal conductivity of this system according 
to Eqs. (1)-(5). The corresponding expressions are too cumbersome to give here, but the 
calculated dependence of the thermal conductivity of the composite on the volume concentra- 
tion of filler has been determined by the above-described procedure and is shown in Fig. i. 
It is evident from the figure that the thermal conductivity of the composite jumps concur- 
rently with the formation of the IC (at q = 17%, provided that 6 ~ i), and then it increases 
rapidly with increasing IC power. The rate of growth of the thermal conductivity of the com- 
posite decreases somewhat when the IC power becomes equal to unity (at D ~ 34%). 

A decrease in the filler-to-matrix density ratio (Pf/OM) is accompanied by a lowering of 
the critical mass concentration of filler at which the IC is formed, thus affording the op- 
portunity of synthesizing a material with good mechanical properties and improved thermal 
characteristics. 

Having indirect notions about the phase state of the components of the composite, we can 
find the qualitative temperature dependence of its thermal conductivity. According to Eqs. 
(1)-(4), the temperature dependence of the relative thermal conductivity of composites is 
contained in the temperature dependence of the parameter 6(T). 

The filler and matrix can exist in three different phase states: crystalline, amorphous 
glassy, and amorphous rubber-elastic (or hyperelastic) states (the case of gas inclusions 
is not considered here) [6]. In the normal temperature range the temperature dependence of 
the thermal conductivities of crystals, glasses, and elastomers has the respective forms 
[6, 7~ 
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Ler(T)--'T -~, 150K~<T<Tm ; 
Xg (T) NT, 30K<-~T<Tg; 

Er(T)~VT b - -T,  Tg<T<Tm,  (9) 

where T b z 1.36Tm [7]. 

Equation (9) can be used to determine the function ~(T) = If(T)/IM(T) along with the 
function 10(T). In particular, if the composite filler is crystalline and if its matrix 
is in the glassy state, we have ~(T) = If(T)/IM(T) ~ T-I/T ~ T -2, or 

~f (To)(T_._~-2=~(To)(S~t -2  ' (10) 8(?3= 
�9 ( T o )  \ 7~ / ~ 1o J ,  , 

where T o is a certain base temperature, for which the value of ~(T 0) is known, and If(T 0 ) 
and IM(T 0) are the thermal conductivities of the filler and the matrix (respectively) at 
T = T 0. The function 6(T) is determined analogously for any other combination of filler 
and matrix phase states. 

The thermal conductivity of polymer composites has been calculated by software imple- 
mentation of the above-described approach, making it possible to predict, essentially in 
real time, the properties of newly synthesized polymer composites with disperse fillers. 
On the other hand, it must be borne in mind that the sample preparation technology can in- 
fluence the density, degree of crystallinity, and grain size of the matrix. Moreover, the 
proposed model disregards the role of the phase interface, but this approximation is justi- 
fied by the good adhesive properties of the polyolefins relative to a very broad class of 
materials. These factors can introduce corrections in the synthesis of the properties of 
polymer composites. 

The thermophysical properties of polymer composites have been investigated experimen- 
tally by the monotonic regime procedure [8]. The measurement error was of the order of 10%. 
The experiments were carried out with mark 21060 polypropylene (PP) composites filled with 
dispersed materials. The fillers were dispersed materials with particle diameters up to 
50 ~m. The thermal conductivities of the fillers were determined on the basis of independent 
laboratory experiments. The procedure used to mix the components and form the samples is 
described in [9]. 

Figure 2 shows the experimental results and calculated graphs of the temperature depend- 
ence of the thermal conductivity of the PP composites for various filler concentrations. It 
is obvious that the thermal conductivity of the PP + graphite composite (i = 20 W/m'K) is 
significantly (an order of magnitude) higher than that of the pure PP over the entire range 
of measurable temperatures (-I00~ to + 150~ at graphite concentrations above the percola- 
tion threshold (= 34 mass %). The thermal conductivity of the PP + alundum composite also 
increases abruptly when the percolation threshold (z 38 mass %) is exceeded, but only two- 
or threefold, since the filler itself does not have a very high thermal conductivity (If = 
3 W/m'K). It is evident from Fig. 2 that the temperature dependence of the thermal conduc- 
tivity for the given composites is very weak [Id(10/Im)/dT ( % 10-2-10-3]. This implies 
that the matrix and fillers of the investigated composites are in the same phase state (since 

no longer depends on the temperature in this case). Good agreement is observed between 
the results of the calculations and the experimental results for a broad range of filler con- 
centrations. Exceptions are found at large filler concentrations (50 mass % for graphite 
and 55 mass % for alundum), for which the calculated data are somewhat higher than the ex- 
perimental thermal conductivities of the composites. This disparity can be attributed to the 
fact that the diminution of the strength and hyperelasticity of the composites is conducive 
to their fissuring under mechanical and thermal loading and, as a result, a reduction in 
their thermal conductivity. 

In summary, the above-proposed method for calculating the thermal conductivity of poly- 
mer composites with disperse fillers can be used to develop algorithms and analytical ex- 
pressions for predicting the thermal conductivity of such materials. The good agreement 
between the experimental and calculated results for different fillers over a broad range of 
concentrations and temperatures leads to the conclusion that the theoretical approach devel- 
oped here is consistent with real heat-conduction processes in composites. The above-des- 
cribed method (and its software implementation) can be used to predict the thermal conductiv- 
ity of newly synthesized composite materials for specific (heat-conducting or heat-insulat- 
ing) applications. 
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NOTATION 

X0, thermal conductivity of composite; AM, thermal conductivity of matrix; kf, thermal 
conductivity of filler; q, volume concentration of filler; 5, relative thermal conductivity 
of filler; k, filler concentration factor; P, probability that a particle (or unit cell) 
belongs to an infinite cluster; ~, relative deviation of filler concentration from its crit- 
ical value;/ qc, percolation threshold (concentration); 6, critical index; qlC, relative 
content of infinite cluster in composite; qci, relative content of closed inclusions in com- 
posite; qM, volume concentration of matrix; qcr, thermal conductivity of crystalline sub- 
stances; Xg, thermal conductivity of amorphous substances in glassy state; %r, thermal con- 
ductivity of amorphous substances in rubber-elastic state; T, absolute temperature; t, tem- 
perature, ~ Tm, melting point of matrix; Tg, glass-transition temperature; Tb, boiling 
point of rubber-elastic materials. 
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